A comparison of two stage and joint TGI-PFS modeling approach to simulate PFS outcome

Laurent Claret¹, Rene Bruno¹, Bei Wang², Mathilde Marchand¹, Chunze Li², Sandhya Girish², Jin Jin², Angelica Quartino²

1 Pharsight Consulting Services, Pharsight, a CertaraTM Company, Marseille, France 2 Genentech Research and Early Development (gRED), Roche, South San Francisco, CA

Pharsight A Certara[™] Company

Background and objective

- In anticancer drug development, tumor growth inhibition (TGI) metrics have been increasingly used to predict time to event clinical outcomes: overall survival (OS) or progression free survival (PFS) [1]
- The commonly used approach involves two step modeling (TSM): 1) a longitudinal TGI model to estimate TGI metrics and 2) a time to event model to link TGI to clinical outcome
 - The goal is to develop a model to predict PFS (or OS) based on TGI (metrics) [1] •
 - *i.e.* it is not investigating exposure/dose TGI relationships
- This TSM approach has been criticized [2] because the uncertainty of the individual TGI metrics estimations is not carried forward in the time to event model likelihood, and it is proposed to use a joint model (JM) fitting simultaneously both dependent variables
- Using typical clinical trial data, JM cannot be easily applied for OS as longitudinal tumor size and time to event data are not recorded simultaneously
 - Longitudinal tumor size data are typically collected up to progressive disease when the • investigational treatment is stopped
 - Death could occur months later and TGI models cannot be extrapolated after treatment stops

Results - Joint Model Development Sequence

	Hazard Model	N of parameters	- 2LL
M1	Int	10	32982
M2	Int + TS(t)/BSL	11	32839
M3	Int + KG	11	32837
M4	Int + KG+Albumin+ECD	13	32825
M5	Int + KG+KS+Albumin+ECD	14	32805
M6	Int + TS(t)/BSL+Albumin+ECD	13	32827
M7	Weibull (Int + KG+KS+Albumin+ECD)	15	32517

N observations = 778 and missing covariates were imputed to the median

- Hazard as a function of TS(t) did not converge, TS(t) must be normalized by baseline: TS(t)/BSL
- The best model described PFS as a function of TGI model parameters (KG and KS) and covariates: same structure as the final TSM

The goal of this work was to evaluate JM to model and predict PFS in comparison to the TSM approach

Data

EMILIA, a phase III study of trastuzumab emtansine (T-DM1) versus capecitabine plus lapatinib (C+L) in HER2-positive locally advanced or metastatic breast cancer (MBC) previously treated with trastuzumab and a taxane [3]

PFS hazard ratio (T-DM1 vs. Capecitabine + Lapatinib), 0.65 (95% Cl, 0.55-0.77), p<0.001 •

Treatment	Ν	N with measurable disease	N with at least one measure after baseline
Capecitabine + Lapatinib	496	386	360
T-DM1	495	392	382
Total	991	778	742

• TGI modeling approaches were limited to:

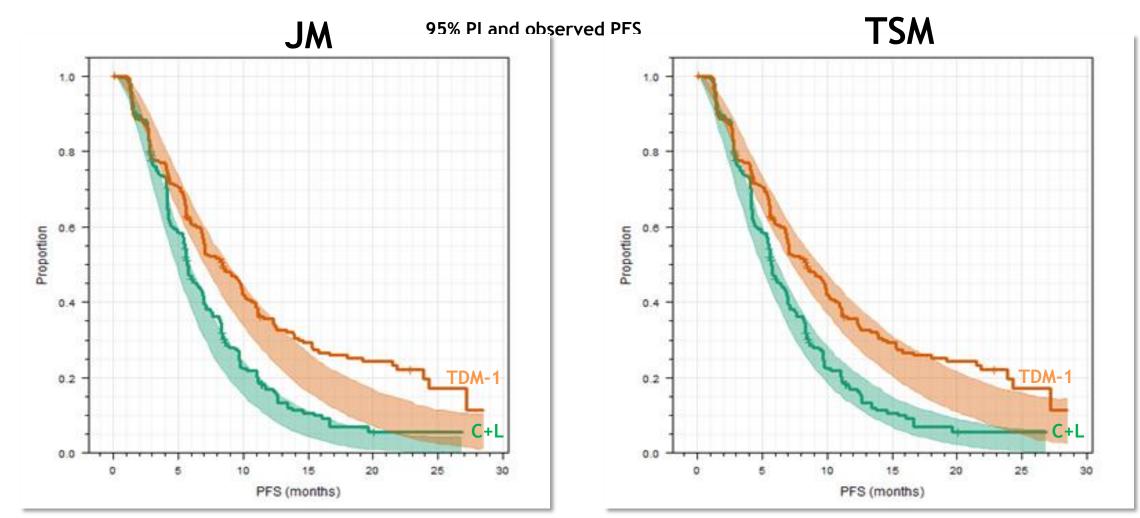
- JM: Patients with measurable disease •
- TSM: Patients with measurable disease and at least one measurement after baseline

Methods

- A TSM approach was developed (not shown)
 - TGI model
 - Stein bi-exponential structural model [4] identified per arm (NONMEM 7.2):

$$\begin{split} \mathsf{TS}\big(\mathsf{t}_{ij}\big) &= \mathsf{TS}_{i,0} \cdot \Big[\exp\big(\mathsf{-KS}_i \cdot \mathsf{t}_{ij}\big) + \exp\big(\mathsf{KG}_i \cdot \mathsf{t}_{ij}\big) - 1 \Big] + \varepsilon_{ij} \\ \theta_i &= \theta \cdot \mathsf{e}^{\eta_i}, \ \eta_i \to \mathsf{N}\big(0, \omega^2\big), \ \varepsilon_{ij} \to \mathsf{N}\big(0, \sigma^2\big), \theta = \big[\mathsf{TS}_0, \mathsf{KS}, \mathsf{KG}\big] \\ i &= 1, \dots, n \text{ individuals, } j = 1, \dots, m \text{ observations} \end{split}$$

Results


Model parameter estimates (PFS in weeks)

Joint Model (M7) - N=778

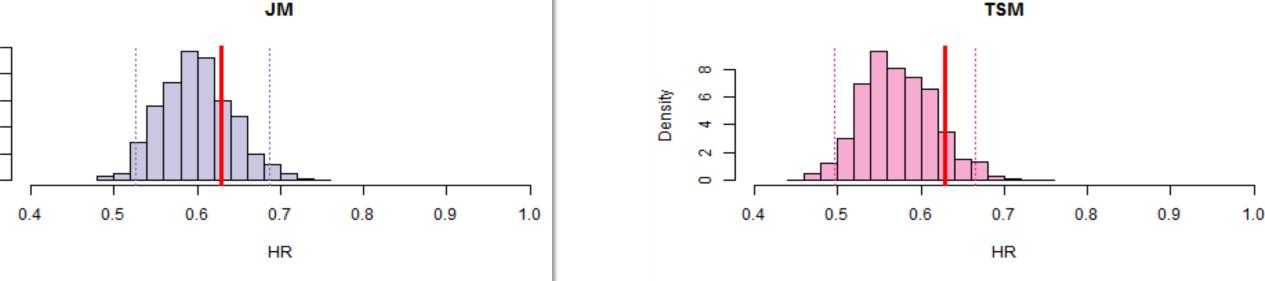
TSM - N=742

Parameter (unit)	Estimate	RSE	Shrinkage	Parameter (unit)	Estimate	RSE	
· · ·		(%)	(%)			(%)	
KG _{TDM1} (week ⁻¹)	0.0081	5.59	-	KG _{TDM1} (week ⁻¹)	0.0078	5.98	
KS _{TDM1} (week ⁻¹)	0.0349	6.25	-	KS _{TDM1} (week ⁻¹)	0.0341	6.16	
KG _{C+L} (week ⁻¹)	0.0127	5.11	-	KG _{C+L} (week ⁻¹)	0.0126	5.28	
KS _{C+L} (week ⁻¹)	0.0417	6.82	-	KS _{C+L} (week ⁻¹)	0.0416	6.58	
TSO (mm)	55.4	2.97	-	TS0 (mm)	55.6	2.98	
σ ²	46.0	8.97	-	σ ²	46.3	8.93	
ω _{KG}	0.495	7.10	14.4	ω _{KG}	0.455	7.82	
ω _{KS}	0.566	8.41	25.3	ω _{KS}	0.580	8.28	
ω_{TS0}	0.643	4.54	4.69	ω_{TSO}	0.641	4.57	
Intercept	-0.841	32.7		Intercept	-0.860	36.4	
logKG	-0.973	3.69		logKG	-1.02	4.28	
Albumin (unit)	0.0203	26.3		Albumin (unit)	0.0157	37.5	
ECD (unit)	-0.000597	16.6		ECD (unit)	-0.000511	26.4	
logKS	0.241	15.7		logKS	0.222	19.4	
Log(scale)	-0.832	5.42		Log(scale)	-0.623	5.57	

PPC of PFS distributions by arm

- KG is the growth rate i.e. the tumor growth inhibition metric that has been reported as being predictive of OS in a number of studies [1, 4]
- TS is the tumor size and KS is the shrinkage rate
- This model is dose independent and only aims to capture TGI dynamic
- PFS model
 - Parametric model (R, survreg)
 - A Weibull distribution was selected among Weibull, log-logistic, lognormal, exponential
 - Hazard (h) and survivor (S) functions are defined as:

 $h(t) = \lambda \alpha (\lambda t)^{\alpha - 1}$ $S(t) = \exp(-\lambda t)^{\alpha}$


- where $1/\alpha$ and λ are the scale and shape parameters (as parameterized in R)
- Covariate model built from a stepwise approach.
 - Full model based on significant covariates in a univariate analysis (cox) p=0.05
 - Backward elimination: from full model with exclusion p=0.01
 - Final covariate model: KG, KS, Albumin, ECD (HER2 extracellular domain)
- A JM is developed
 - TGI model •
 - Same structure as in TSM approach
 - PFS model
 - The hazard h(t) is defined at t and as a function of baseline covariates, x, and time dependent covariates, TS(t), or TGI model parameters (KG, KS) simultaneously estimated,

h(t) = f(t, x, TS(t)) $S(t) = e^{-\int h(u) \cdot du}$

- Hazard driven as a function of TS(t), TGI metrics
- Final covariates of TSM model are tested
- Weibull distribution was tested

	Observed	ML		TSM		
	Median *	Predicted	95% PI	Predicted	95%PI	
	(months)	(months)	(months)	(months)	(months)	
C+L	5.72	5.35	(4.84,5.9)	5.54	(4.99,6.18)	
TDM-1	8.39	7.89	(7.08,8.89)	8.33	(7.36,9.37)	
* TSM evaluable patients N=742						

	Observed*	Predicted	95% PI		
TSM	0.629	0.568	(0.496,0.665)		
JM	0.629	0.597	(0.525,0.687)		
* TSM evaluable patients N=742					

The JM approach improved PFS parameter estimates precision and KG shrinkage

Discussion

- KG was as good a predictor of PFS as time dependent baseline normalized tumor size: TS(t)/baseline
 - One would expect that the use of time dependent metric TS(t) may be more efficient than static TGI parameters or metrics estimates

- JM was implemented in NONMEM 7.2
- Both JM and TSM PFS models were evaluated in their abilities to simulate PFS distributions in treatment arms and treatment hazard ratio (HR)

Predictive Check

- As the goal is to predict PFS based on TGI data and covariates, the PFS models were evaluated by posterior predictive check
- PFS of the original TGI data and covariates (TSM evaluable patients) are simulated a large number of times then the 95% PI of simulated statistics are compared to observed statistics:
 - Kaplan-Meir distributions and median PFS in treatment arms
 - Hazard ratio comparing T-DM1 to capecitabine + lapatinib

References

- Bruno R et al. *Clin Pharmacol Ther*; 95, 386-93, 2014
 Mansmann UR et al. *J Clin Oncol*; 31, 4373, 2013
- Verma S et al. *N Engl J Med* 367; 19, 2012
- Stein WD et al. *Oncologist*; 13, 1046-1054, 2008

- The Weibull assumption of hazard provided a better fit than hazard dependent on time dependent metric TS(t)
- The final structure of the joint model was identical to that of the TSM one

ŝ

9

4

2

- JM improved KG shrinkage and precision of PFS model parameter estimates
- Overall, model parameter estimates and model performances were similar
- JM model development included all patients with measurable disease

Conclusions

- This comparison, based on an analysis of a single study, shows that despite a slightly better precision of JM model parameter estimates, structural models and prediction performances are similar for both approaches
- TGI metrics are similar than time-varying baseline-normalized tumor size to drive PFS hazard function
- Ultimately, the goal of the model will have to be accounted for to select the preferred approach:

1. Assess an early marker of effect to support clinical trial decisions

- 2. Develop the best model to simulate alternative dosing regimen or clinical trial designs
- 3. Predict individual patient outcome to support therapeutic decisions
- For some of those applications and especially 2. and 3., a more mechanistic TGI model linking dose-PK-TGI-PFS might be required when inferences need be made for alternative dose regimen (dose and schedules)